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Summary

We discuss and address two questions for effective medium
theories in fractured, porous media: How the pores and
cracks interactions could affect the elastic response and
seismic anisotropy? And can we physically characterize the
pores and cracks interactions? We first use Biot-Gassmann
consistency concept to test if an effective medium theory is
physically plausible. Then a detailed theoretical analysis
and numerical simulations about T-matrix theory for the

effective elastic properties will be explored. We also

compare the numerical results from different effective

medium theories, revealing the physical importance to

consider the elastic interactions of pores and cracks.

Introduction

In the past several decades, many theoretical models have
emerged to predict the effective elastic properties in
fractured, porous media. Most of them are based on strong
assumptions with idealizations and simplification of the
complexity of real rocks. Most popular approaches to
predict the compressibility of a rock containing a finite
concentration of pores use non-interaction approximation
(NIA) methods to avoid solving pore interactions problems.
Those approaches can typically be divided into stiffness
based NIA (Eshelby, 1957; O'Connell and Budiansky,
1974; Hudson, 1980) and compliance based NIA
(Kachanov et al., 1994; Schoenberg, 1980). But physically
they can only work in dilute concentrations of porosity and
crack density In order to overcome the dilute limit of NIA,
some rock physics schemes, such as differential effective
medium (DEM) theory (Nishizawa, 1982; Xu, 1998) and
self-consistent (SC) theory (Budiansky, 1965; Berryman,
1995; Hornby et al., 1994), are proposed to handle large
concentrations of pores and cracks. It seems that DEM and
SC which implicitly simulate the pore interactions can
overcome the dilute limit of non-interaction approximation
approaches. However, it is not clear that whether those
implicit simulations represent the real physical interaction
between pores and cracks. Analysis of the assumptions, and
resulting characteristics and limitations, of various effective
medium theories from the perspective of pores and cracks
interactions is presented. The definition and a more
physically reliable effective medium theory to characterize
the seismic response of the fractured, porous rocks are also
described.
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Biot-Gassmann Consistency

One approach to verify an effective medium theory is to
use Thomsen’'s (1985) Biot-Gassmann consistency idea.
The concept of Biot-Gassmann consistency can be stated as
follows: The Biot-Gassmann theory makes only minimal
assumptions about the microscopic geometry of the rock. In
other words, if the porosity is uniform and the pore
pressure can be equilibrated, Biot-Gassmann theory can
always work. Therefore, any effective medium theory
which does make such assumptions (no pore
heterogeneities exist), theoretically, should be a special
case of B-G theory (Thomsen, 1985). Biot-Gassmann
consistency should be considered as a constraint to test the
physical foundation of an effective medium theory. That is
to say, if an effective medium theory is physically sound, it
should predict the relationship between the elastic response
of dry rock and saturated rock as that predicted by Biot-
Gassmann theory. It is easy to prove that many non-
interacting methods (shape dependent methods, e.g.
Eshelby’s first order approximation) and bounding methods
(shape independent methods, e. g. Voigt-Reuss bound, HS
bound) are consistent with Biot-Gassmann predictions.

The requirement of Biot-Gassmann consistency is now
tested in the DEM and SC as shown in Figure 1. In our
modeling, cracks are vertically aligned and parallel to each
other in an isotropic host rock, the resulting cracked rock is
transversely isotropic with a horizontal symmetry axis
(HTI1). The host matrix is assumed to be calcite, the aspect
ratio of the cracks is 0.05. There are five independent
elements in the effective elastic stiffness tensors, C33 and
C11 correspond to P-wave propagating parallel and
perpendicular to the crack plane, and C44 and C66 is
related to the polarization of S-wave parallel and
perpendicular to the crack plane. The volume crack density
¢ (O’ Connell and Budiansky, 1974; Hudson, 1980) is
dependent on crack aspect ratio and crack induced porosity.
If no other specific instructions, all the numerical
simulation in this abstract will be based on this HTI
cracked model. Observation of Figure 1 shows that the
saturated stiffness C11 by DEM and SC are not in
agreement with those predicted by the Brown-Korringa's
relations (Figure 1(a) and (b)). This demonstrates that DEM
and SC are not consistent with Biot-Gassmann theory,
which also implies that the pores and cracks interactions
simulated by DEM and SC lack physical foundation.
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Figure 1: The effective elastic stiffness C11 as a function of crack
density simulated by (a) SC, (b) DEM. Blue line represents elastic
response of dry rock simulated by DEM and SC. Red line and
black line indicate elastic stiffness for saturated rock predicted by
DEM and SC and Brown-Korringa relations, respectively.

T-matrix to characterizethe elasticinteractions

Estimating effective elastic constant of composites can be
considered as a many-body problem. One approach to
attack such a many-body problem is based on the integral
equation or T-matrix approach of quantum scattering
theory. This approach takes into account interactions
between inclusions based on multiple-point correlation
functions. The effective stiffness of the cracked, porous
medium is given by Jakobsen et al. (2003a):
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Here, G is a fourth-rank tensor given by the strain
Green’sfunction integrated over characteristic inclusion
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shapev(r) is the volume concentration of inclusion type r,
X is the second-order correction for the effects of inclusion
tensor. Analytical form of the fourth-rank tens@f® for a
transversely isotropic system is given by Mura (1982).
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And | is the fourth-rank identity tensog (¥ represents the

two-point interaction between the rth set and sth set of
inclusions. The definition of the aspect ratio of inclusion
and aspect ratio of spatial distribution are schematically
displayed in Figure 2.
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Figure 2: Schematic illustration of a 2D cross section through the
3D ellipsoidal crack distribution in the T-matrix model. The aspect
ratio of the individual cracks is al/ b1, and the aspect ratio of the
crack distribution is a2/b2 (After Hu and McMechan, 2009).

Figure 3 is used to illustrate the influence of the aspect ratio
of the inclusion and aspect ratio of the spatial distribution
on the elastic stiffness of C11. Clearly, the aspect ratio of
inclusion has dominant impact on controlling the rock’s

overall elastic behavior compared with aspect ratio of
spatial distribution. It is also interesting to see that stiffness
exhibit different sensitivity to the aspect ratio of the spatial

distribution when the aspect ratio of inclusion varies.

Aspect ratio of spatial distribution generally has bigger

impact on the effective elastic stiffness when the aspect
ratio of inclusion is lower.

Stressinteractions

Figures 3 shows that the computed elastic stiffness
decreases with the increasing aspect ratio of spatial
distribution. This can be explained by the variation of stress
field due to the crack interactions. There are two main
crack interaction effects (Kachanov, 1992; Grechka and
Kachanov, 2006a;Hu and McMechan 2009): stress
amplification occurs between the tips of cracks while
increases the local stress; stress shielding occurs between
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the faces of cracks and decreases the local stress. Normally,
stres shielding dominates for stacked cracks, and stress
amplification dominates for coplanar cracks (Kachanov,
1992; Grechka and Kachanov, 2006c). Those stress
amplification and stress shielding phenomenon are
illustrated in Figure 4. Figure 5 presents how the aspect
ratio of the spatial distribution affects the elastic stiffness.
When the aspect ratio of the spatial distribution decreases,
the crack faces will approach closer and closer. So stress
shielding will increase stronger than stress amplification,
and thus the stiffness will increase accordingly.
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Figure 3: Computed elastic stiffness C11 as a function of aspect
ratio of inclusion and aspect ratio of spatial distribution. Porosity is
setas 0.1.

Stress amplification Stress shielding
Figure 4: Schematic illustration of stress interaction between two
cracks: (left) coplanar cracks, (right) stacked cracks. Yellow lines
indicate the iso-stress line.

T-matrix to Biot-Gassmann Consistency

The constraints of Biot-Gassmann consistency are applied
to the T-matrix as shown in Figure 6. It turns out that the
saturated stiffness simulated by T-matrix exactly matches
those predicted by the Brown-Korringa’s relations. This
suggests that T-matrix is consistent with the Biot-
Gassmann theory. However, note that the SC and DEM
which implicitly simulate the pore interactions are not
consistent with Biot-Gassmann as demonstrated in Figure 1
(a) and (b). On the other hand, this observation verifies that
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the T-matrix simulate the crack interactions with physical
foundation. Figure 7 illustrates the fluid saturation effect in
the case where both stiff pores and thin cracks are present.
The simulated saturated stiffness by T-matrix tends to
deviate from the prediction by Brown-Korringa's relations
when cracks occur, which suggest that the T-matrix is not
consistent with B-G theory if pore heterogeneities exist.

Aspectratio of spatial distribution &, l Stress shielding T

Figure 5: Schematic illustration of how the aspect ratio of spatial
distribution affects the stress field.
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Figure 6: lllustration of T-matrix to Biot-consistency. The effective
elagic stiffness C11 is diaplayed as a function of crack density.
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Figure 7: Dispersion effect of the elastic stiffness C11 with
increasing crack density. The solid matrix is calcite and the matrix
(stiff) porosity is 0.2. The aspect ratio of the matrix porosity and
cracks are set as 0.5 and 0.05 respectively.
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Comparison of different effective medium theories

The ®mparisons of T-matrix with Hudson’s crack theory,
compliance based NIA, Self-consistent and DEM model are
displayed in Figure 8. As expected, the several predictions
are close to each other when the crack density is small, but
deviate significantly at high crack density. This
demonstrates the importance of including the effects of
spatial distribution when trying to deal with non-dilute
mixtures of highly contrasting material properties.
Hudson’s crack theory typically breaks down at high crack
density. The compliance based NIA gives the best match
with the T-matrix when the aspect ratio of spatial
distribution is very small, which represents stress shielding
dominating the crack interaction effect. However, this
should not be considered as physical equivalence, as the
physical assumptions of the two effective medium theories
are different. The compliance based NIA does not include
the crack interaction or the effect of spatial distribution,
whereas those are explicitly characterized in the T-matrix
formulation. Additional insight can be gained from this
comparisons is that the Self-consistent and DEM
prediction approach the T-matrix prediction when the
aspect ratio of the spatial distribution is 1, and this is in
accordance with the assumption of SC and DEM, in which
the cracks are distributed randomly.
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Figure 8: Comparison of C1l as a function of crack density
predicted by different effective medium theories.

How the spatial distributions of cracks affect the seismic
anisdropy for HTI media (Figure 9) is also examined. It is

clear that the impact of spatial distribution on the seismic
anisotropy become increasingly important when the
inclusion concentrations increase beyond the dilute limit.
Generally, the seismic anisotropy will decrease as the
aspect ratio of spatial distribution decrease. In other words,
the amplitude of seismic anisotropy will get stronger when
the stress amplification dominates the crack interactions.
Moreover, the gamma parameter, which is a measure of

shear wave splitting discussed in many papers (see Bakulin
et al., 2000) is close to crack density which indicates the
degree of fracturing (Grechka and Kachanov, 2006c).

Figure 9 clearly shows that this conclusion is mainly based
on Hudson'’s theory. Nevertheless, T-matrix normally gives

a higher prediction about crack density based on the
anisotropic parameter gamma, and this effect is more
evident when the stress shielding dominates the crack
interactions at high crack density.
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Figure 9: Comparisons of predictions of Thomsen'’s anisotropic
parameter Gamma as a function of crack density. Black dashed
lines indicate T-matrix prediction with different aspect ratio of
spatial distribution marked.

Conclusions

We hare discussed how to select a convincing effective
medium theory to characterize the elastic response for
fractured, porous rock. A good effective medium theory
should satisfy three conditions: first of all, it should work
beyond dilute limit; secondly, it should be consistent with
Biot-Gassmann theory; finally, it should characterize the
pores and cracks interactions with physical foundations.
DEM and SC implicitly simulate the elastic interactions
between pores and cracks, but are not Biot-Gassmann
consistent. Numerical results show that T-matrix can
produce physically plausible results even at large
concentrations of pores, and is always Biot-Gassmann
consistent when no pore heterogeneity exists. This suggests
that T-matrix explicitly simulate the pores and crack
interactions with physical foundations. We also use the T-
matrix theory to study how the spatial distribution of pores
and cracks affect rock’s elastic response and seismic
anisotropy, and this impact cannot be ignored when the
inclusion concentrations (porosity or crack density)
increases beyond the dilute limit.
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