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SUMMARY

We discuss a method for selecting optimal filter lengths, trace
segments and damping parameters for local-matching of time-
lapse seismic data sets. In this method, an evolutionary pro-
gramming (EP) algorithm is used to optimize parameters such
that estimated match filters have predefined properties within
and outside the estimation window. Results from a 3D time-
lapse data set from the Gulf of Mexico show that this method
provides improvements over conventional local-matching that
use fixed, manually selected filter estimation parameters.

INTRODUCTION

Time-lapse (4D) seismic is a proven technology for monitoring
hydrocarbon reservoirs and is now central to most field devel-
opment and management plans (Landrrø et al., 2001; Marsh
et al., 2003; Whitcombe et al., 2004). A recurring challenge in
time-lapse seismic applications is non-repeatability resulting
from difficulties in replicating the same acquisition geometry
for different surveys. Therefore, time-lapse seismic images
usually require additional processing (cross-equalization) be-
fore they can be interpreted for reservoir changes.

The estimated seismic amplitude changes at the reservoir de-
pend on the equalization methods applied to the seismic data
sets. A wide variety of equalization methods can be imple-
mented at different stages of processing, but here we are con-
cerned with post-stack match filter-based methods. A proce-
dure for such methods can be broadly summarized as follows:

• Event-alignment: Correction for time-shifts caused by
geomechanical effects and velocity changes using warp-
ing or local cross-correlation methods.

• Matching: Global and/or local match filtering of the
base and monitor images within a window outside the
reservoir region to remove unwanted phase and ampli-
tude differences between the images. In some imple-
mentations, this step is usually preceded by spectral
shaping and amplitude balancing.

We aim to improve the filter estimation process and also reduce
some of the undesirable match filter attributes. Convention-
ally, a single window (outside the reservoir) is used to estimate
match filters, which are then applied to the full data set. This is
limiting, because there is no guarantee on the performance of
the filters when applied to an area outside the estimation win-
dow – where, for example, there are no changes in reservoir
properties. There is also no guarantee that the filters will atten-
uate artifacts and not contaminate the true time-lapse seismic
signal in the reservoir region (Lumley et al., 2003). Further-
more, parameters for estimating the match filters are typically
manually selected and are usually assumed to be stationary

throughout the seismic volume. However, while the chosen
parameters may be suitable in certain parts of the seismic vol-
ume, they may perform very poorly in other areas. For exam-
ple, the optimal length of a local match filter is non-stationary
from trace-to-trace.

We improve the filter estimation process by optimizing the pa-
rameter selection process with an evolutionary programming
(EP) algorithm. We use multiple time-windows above and be-
low the reservoir region, with one set of windows used for filter
estimation and the other for validation.

In this paper, we first summarize the least-squares formula-
tion of the match filter estimation problem. We then outline
an estimation strategy that utilizes an EP algorithm for param-
eter selection. Finally, using a 3D data set from the Gulf of
Mexico, we show that the proposed method improves cross-
equalization, and hence gives more accurate time-lapse ampli-
tudes within the reservoir interval.

MATCH FILTER ESTIMATION

Given two seismic traces (b and m), a filter f that matches the
two is one that minimizes the residual r in the equation

r = f ∗m−b, (1)

where ∗ represents convolution. In the time-lapse problem,
traces b and m are traces extracted from a window inside the
baseline and monitor data sets. Equation 1 can be re-written in
two equivalent matrix-vector forms as follows:

r = Fm−b, (2)

or
r = M f −b, (3)

where F and M are convolution matrices built from the filter
coefficients and monitor data respectively. Equation 3 can be
minimized using any norm, but we follow a least squares ap-
proach, for which we can write

f = (M′M)−1M′b. (4)

We can solve this in the frequency domain as follows:

F(w) =
M(w)B(w)
M(w)M(w)

, (5)

where M(w) is the complex conjugate of the monitor data. In
order to avoid zero division, a damping factor ε is included in
the denominator of equation 5 so that we have

F(w) =
M(w)B(w)

M(w)M(w)+ ε2
. (6)

Zero-division can also be avoided by reducing the roughness
of the frequency spectra with a smoothing function, <>:

F(w) =
< M(w)B(w) >

< M(w)M(w) >
. (7)
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Optimized local-matching of time-lapse seismic data sets

Equation 6 or 7 can be used to compute a single global match-
ing filter for the whole data set or local-matching filters at each
trace location. In many implementations (e.g. Rickett and
Lumley (2001)), global match filtering is followed by local-
matching of the data sets. We limit our discussions in this
paper to local filters which we compute using equation 6.

PARAMETER OPTIMIZATION

The local match filters derived from equation 6 are a non-
linear function of the filter parameters. Usually, practitioners
select estimation parameters through a manual trial-and-error
approach. This can be a tedious or impossible challenge due
to the strong non-linearity of the problem and the large size of
seismic data sets. In this section, we summarize a simple opti-
mization method that can be used to select the best parameters
for filter-estimation.

Evolutionary programming (EP)
EP belongs to a class of global optimization methods called
evolutionary algorithms. These algorithms solve optimization
problems using Darwinian evolutionary principles of natural
selection. A basic evolutionary algorithm pseudocode is sum-
marized as follows:

Initialize the population

Evaluate initial population

Loop

Generate new solutions from current

ones using genetic operators

Evaluate all solutions in the population

Perform competitive selection of

solutions within population

until convergence criteria is satisfied

Application of evolutionary algorithms (EA) to seismic prob-
lems is not new. Published examples include waveform-inversion
(Sambridge and Drijkoningen, 1992), horizon-tracking (Aurn-
hammer and Tonnie, 2005) and wavelet estimation (Yang et al.,
2007). Genetic algorithms (GA) are the most common mem-
bers of the EA family, but we use EP because of its simplicity
and ease of implementation. The most important implemen-
tation considerations include the population size and initial-
ization, the mutation operator, and the selection/rejection cri-
terion. Selecting an appropriate error/fitness function is also
important, because this determines which of the solutions are
kept and which are rejected.

Workflow

The simplified workflow in Figure 1 summarizes the applica-
tion of EP to parameter selection in the filter estimation prob-
lem. Estimation and validation windows are defined outside
the reservoir. The EP algorithm optimizes the estimation win-
dow (by defining new trace-segments and the ramp-off within
the estimation window at each trace location), the filter length
and the damping factor in equation 6. We define the error func-
tion as the weighted repeatability, rrr, computed within the

initialize population

create offsprings by mutation

evaluate fitness function

apply selection criterion

evaluate

termination

criterion

truefalse stop

Indiv. 1
Indiv. 2
Indiv. 3

:
Indiv. N-1
Indiv. N

Indiv. properties:
trace segment

and taper
ramp, filter

length, epsilon

LMF+Error function

Error function: user-defined

(e.g. maximum repeatability

over validation window)

Figure 1: Evolutionary programming workflow for selecting
estimation parameters for local match filters.

validation windows as follows:

rrr = 2×
(b−m)rms
brms +mrms

, (8)

where brms and mrms are the root-mean-square energy from the
baseline and matched-monitor trace segments, respectively.

EXAMPLE

We applied this method to a time-lapse data set from the Hol-
stein field located in the Gulf of Mexico. The baseline is a
single-vessel data set acquired in 2001, whereas the monitor is
a dual-vessel data set acquired in 2006. The data sets were pro-
cessed using a 4D parallel processing workflow that includes
4D-binning and regularization, differential statics, multiple at-
tenuation, acquisition footprint removal and pre-stack depth
migration. A detailed review of acquisition and processing of
the Holstein time-lapse data sets is given by Ebaid et al. (2008).

First, we aligned the data sets by applying time-shifts (not
shown) that were computed with a local cross-correlation tech-
nique. Figure 2 shows the baseline and time-shifted monitor
along an arbitrary traverse, T RX , and the positions of the es-
timation and validation windows. After several tests, we se-
lected the best estimation parameters and compared the results
from the derived filter with those obtained from optimized pa-
rameters. We used a fixed 3x3 mixing window around each
trace for both the time-shift and filter estimation.

Time-lapse difference sections through a segment of traverse
T RX , before and after match filtering, are shown in Figure 3.
Note the high-amplitude undershoot artifacts above the reser-
voir, where production facilities obstructed the monitor survey.
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Optimized local-matching of time-lapse seismic data sets

(a) (b)

Figure 2: (a) Base and (b) monitor data sets through traverse T RX shown in Figure 4. The estimation window and two validation
windows above and below the reservoir window are shown in (b).

(a) (b) (c)

Figure 3: Time-lapse difference images obtained (a) before and after filtering with match filters from (b) the best fixed set of
parameters, and (c) optimized filter parameters. Note that optimally-filtered images contain fewer artifacts outside the estimation
window (ovals) and that the time-lapse image around the reservoir (rectangular boxes) is improved.

Figure 4 shows repeatability values along a horizon at the
top of the estimation window before and after filtering. This
window contains only artifacts since no production-related
changes exist. The high-amplitude artifacts at the centre of
the polygons in Figure 4 occur at the undershoot position.

Time-lapse seismic amplitudes, extracted at the top of a pro-
ducing and target reservoir are shown in Figure 5. One of the
goals of this time-lapse survey is to ascertain whether hydro-
carbon has been drained from a drilling target adjacent to the
producing reservoir (see Figure 5). Note that the unmatched
time-lapse data set show no amplitude changes around the
target area, whereas the filtered data sets show amplitude
changes.

DISCUSSION AND CONCLUSIONS

Artifacts in the time-lapse image are better attenuated with the
optimized filters (Figure 3). Although the filters obtained from
fixed parameters attenuate the artifacts within the estimation
window, they also increase the artifacts outside this window
(Figure 3(b)). In particular, note the increased noise ampli-
tudes in the top validation window. Such filtering artifacts are
propagated to the reservoir window, and if uncorrected, they
contaminate production-related amplitude changes. These fil-
tering artifacts are attenuated by the optimized filters because
they account for artifacts outside the estimation window (Fig-
ure 3(c)).
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Optimized local-matching of time-lapse seismic data sets

(a) (b) (c)

Figure 4: Horizon maps through the repeatability volume at the top of the estimation window (see Figure 2) showing repeatability
measures before matching (a), and after matching using fixed (b) and optimized (c) filter parameters. The black zig-zag line
indicates the arbitrary traverse T RX shown in Figure 2

(a) (b) (c)

Figure 5: Extracted time-lapse amplitude maps above a target reservoir region before matching (a), and after matching using fixed
(b) and optimized (c) filter parameters. Note the strong amplitude difference within the ovals in the filtered results. The optimally-
filtered results contain fewer artifacts.

Optimized filters improve repeatability within the estimation
window relative to the fixed-paramter filters (Figure 4). Our
study of the repeatability volumes shows that there is even
better improvement outside the estimation window. In gen-
eral, such improved repeatability outside the estimation win-
dow translates to cleaner time-lapse images within the reser-
voir window. This is important since the matching goal is
to attenuate non-production-related energy. A study of time-
lapse amplitudes shows that optimized filters reduce filtering-
artifacts both within and outside the reservoir window.

Carefully designed local match filters can significantly im-
prove time-lapse seismic amplitudes (Figure 5). Filtering with
carefully chosen filter parameters clearly highlights the ampli-
tude changes (previously unseen in the unmatched data) in the
target area. Although fixed-parameter filters highlight these
time-lapse changes, they also introduce artifacts outside the
reservoir region (Figure 5(b)). This may suggest that the am-
plitudes seen in the target sands may be spurious signals. How-
ever, results from the optimized filters (Figure 5(c)) show a
more enhanced amplitude changes around the target area, with

less artifacts outside the region. New drilling (not shown) re-
sults are being studied to confirm these results.

One drawback of the proposed technique is that it is computa-
tionally intensive, requiring a solution to equation 6 for each
member of the population. However, since the filters are com-
puted locally, the problem is embarrassingly parallel, allowing
very fast computations. We also note that although this method
achieves improved matching, there are still significant residual
artifacts from the undershoot. Ayeni and Biondi (2008) discuss
an inversion scheme that attenuates such artifacts.
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