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Introduction to this special section: AVO inversion

Vaughn Ball', Mosab Nasser', and 0dd Kolbjgrnsen?

he goal of AVO inversion is to estimate subsurface rock

properties using seismic P-P reflection data as input. This
article serves as a nonmathematical introduction to the topic. The
reader will not find any equations here. Instead, we will use words
and diagrams to introduce AVO inversion at a conceptual level
and then set the context for the articles that have been contributed
to this special section on AVO inversion.

The deterministic backstory to AVO inversion

The forward seismic problem can be represented in symbols
as seismic.model = function(rock.properties). As geophysicists, we are
inclined to represent the inverse problem as the mathematical
inverse of this: rock.property_estimate = function™ (seismic.model). In
other words, our focus is on function and its mathematical inverse,

Sfunction™. 'This is a deterministic inversion framework because it
assumes that the inputs are known precisely and are not subject
to errors, nor does it take into account the uncertainty in the
match between the observed seismic data and the forward model.
Unfortunately, the deterministic approach is not suitable for AVO
inversion, and an underlying statistical model is required. We
first explain why this is true before moving on to discuss the two
major statistical frameworks used in AVO inversion.

Some input parameters to the AVO forward model have zero
for an output response. Collectively, these parameters are called
the null space of the forward model. This is illustrated in Figure 1.
Most of the parameters input into the forward model will have
some effect on the seismic response. However, this is not always
the case. When an input parameter gives the output response of
zero, we say this parameter is in the null space of the function.
This situation arises in a variety of circumstances in AVO inversion.
One example is an impedance profile that is constant with depth.
There is no output response to a constant profile because the AVO
forward model includes a derivative-like operator to compute the
reflectivity. Even when an impedance profile changes with depth,
the zero Hz component of the profile is in the null space of the
derivative operator.

When a forward AVO model involves wavelets that are
nonzero only within a certain frequency passband, then any
elastic parameter component outside this passband is in the null
space of the forward model. For example, if a thin bed is so thin
that it is outside the passband of the wavelet, then the AVO
response to the thin bed will be zero and the thin bed response
is in the null space. Oftentimes, parameters are not in the null
space but are near it. One example of this is the 5 Hz component
of the elastic profile. Although the response to the 5 Hz com-
ponent is not zero, it is nearly zero, so we can say that the 5 Hz
component is near the null space. Similarly, if the seismic wavelet
is nearly zero at some frequency, then the elastic profile at that
frequency is near the null space of the forward model.

A related issue involves insensitivity to combinations of input
parameters. Insensitivity implies that changing a parameter or

combination of parameters has no effect on the AVO response.
Take for example a binary sand/shale system. Changing the poros-
ity of the sand component may not have an effect on the output
so long as it is matched by just the right change in shale properties
or the net-to-gross.

When a parameter is near the null space, or when the forward
model is insensitive to a parameter or combination of parameters,
then deterministic inversion fails. If a parameter is near the null
space, then a large change in the parameter causes a small change
in the modeled seismic data. When the inverse of the function is
used to estimate parameters from seismic data, then the converse
is true. That is, a small change in the measured seismic data results
in a large change in the estimated parameter. This is a classic
example of instability. Seismic noise can be thought of as random
perturbations to the seismic data, and it results in large random
perturbations to estimated properties when they are near the null
space. A good example of this is that for fixed impedances, a large
perturbation in density is required to make a visible difference on
the seismic. Therefore, if a deterministic inverse is used, small
amounts of noise on the seismic will result in large noise levels
on the density estimate, even in the case when impedances are
perfectly reconstructed.

"The above paragraphs introduce some of the problematic issues
associated with AVO inversion and explain why a deterministic
inverse is not a suitable approach. The various real-world ap-
proaches to solving this kind of i//-posed inverse problem can be
broadly divided into two categories based on their underlying
statistical model. To many readers, it might come as a surprise
that we need to discuss a statistical model in the inversion context,
but the fact is that the statistical model plays an important role
in AVO inversion, even in cases where it is not explicitly stated.

The statistical backstory to AVO inversion

To set the background for understanding the two statistical
frameworks for inversion, we pose this question: are earth proper-
ties random? The frequentist inversion framework answers no;
there is a fixed but unknown set of rock properties at any given

nput

parametors
. Forward

— Model

Parameater

In nuill space

Figure 1. Under normal circumstances, an input parameter will have
some effect on the output. When an input parameter is in the null
space it will have no effect.
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location in the subsurface. The task of inversion is to make an
estimate of subsurface properties that is as close to this fixed truth
as possible. By contrast, the Bayesian inversion framework rep-
resents the predrill subsurface properties using a probability
distribution. This might sound unreasonable at first. After all,
there is a truth about the subsurface; we just don’t know what that
truth is until a well is drilled. However, a simple analogy might
help the reader understand why the Bayesian statistical framework
has considerable merit.

Consider a flipped coin while it is still in the air. This is a classic
example of a random variable where the probability of heads is
50/50. But what if the coin is caught and hidden until someone
makes the call heads or tails? Is it still random? The answer is no;
however, the state of knowledge is still 50/50, and so we would still
say that the outcome is 50/50. Therefore, the Bayesian inversion
framework recognizes that this is actually a statement about our
state of knowledge, and not about the hidden coin itself. Analo-
gously, the subsurface is already a flipped coin, and when we talk
about probability distributions, it is actually a statement about our
state of knowledge, not a statement about the subsurface.

To emphasize: the two broad approaches for dealing with the
ill-posedness of the seismic forward problem are the frequentist
and Bayesian approaches. Our starting point for discussing the
differences between these two approaches is that the frequentist
views the subsurface properties as fixed but unknown, while the
Bayesian characterizes the prior understanding of the subsurface
using a set of probability distributions. Deterministic inversion
has no statistical model, and this is what differentiates it from
both the frequentist and Bayesian approaches.

Most geophysicists feel more comfortable with the frequentist
framework because it conforms to instincts about the subsurface
and a dominant familiarity with the forward models. But there
is significant value in the Bayesian approach, and it continues to
gain popularity within the AVO-inversion community. We’ll
come to the Bayesian approach shortly, but first we will discuss
the key elements of frequentist inversion.

The frequentist approach to AVO inversion

The frequentist approach to dealing with the issue of ill-
posedness is to replace the original forward model with a new one,
the inverse of which is we//-posed. This process is called regulariza-
tion, and it can appear in several forms. Take for example a three-
term linear AVO equation that is parameterized in terms of in-
tercept, slope, and curvature. One approach to regularizing the
forward model is simply to drop the third term associated with
curvature and perform a two-term inversion. By far, this is still
the industry’s most common approach to AVO regularization. It
falls into a class of regularization approaches called #runcation.

How does truncation work? If the original three-term model
is more accurate, then why would we intentionally blunt that
accuracy by throwing away one of the terms? We've actually already
given the answer to this question above: when an input parameter
or combination of input parameters imparts only a small change
to the modeled seismic response, then small amounts of noise on
the recorded data will result in very large changes to the low-order
parameter estimate. This is truly a paradox! On the one hand, it
seems desirable to have a forward model with higher precision,
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but, on the other hand, that extra precision causes the inverse
problem to be more ill-posed. Take for example the Zoeppritz
equation for P-P reflectivity. From a forward modeling perspective,
Zoeppritz is presumably more accurate than one of the common
three-term small-contrast approximations. And yet this precision
is almost certainly blunted by some form of regularization when
used in inversion. So, truncation works by eliminating those
components of the forward model that are close to the null space.

Another important frequentist approach to regularization is
to augment (or complement) the original forward model with other
physical information. Instead of throwing out an unruly parameter
from the forward model, we augment the forward model with
constraint equations. For example, it is possible to augment the
original AVO equations with additional equations that penalize
the magnitude of the inverted parameters. This augmented structure
translates directly into the familiar damped least-squares formula-
tion. Sometimes, additional rock-physics information can be in-
corporated directly into the forward model. For example, if there
is a known relationship between velocity and density, then this
can be explicitly included in the forward model. Note the difference
between this and the Bayesian approach: whereas the Bayesian
approach employs a probability distribution to represent prior
rock-physics information, the frequentist approach alters the
forward model itself to incorporate rock-physics relationships.

Unfortunately, changing the original forward model in the
frequentist approach introduces a new problem called 4ias. The
informal meaning of bias is that although the answer is less noisy,
it suffers a shift away from the true answer. A simulation experi-
ment can be performed to illustrate this effect. Remember that
the frequentist assumption is that there is a single true answer;
this gives the following setup for the experiment:

1) Assume some fixed value for rock properties.

2) Forward model the data using the full-forward model.

3) Add random noise to the simulated data.

4) Invert using the inverse of the regularized forward model and
store the result.

5) Repeat from 3 for each realization of noise.

Figure 2 shows a comparison of the result where the three-term
AVO equation is used as a forward model. The histogram obtained
for the estimate of AVO gradient is displayed for a full three-term
inversion and a two-term truncated model. The histogram obtained
with the three-term expression is centered directly on the true
value (green line) but has a considerably wider spread than the
estimate based on two terms. The two-term histogram, however,
is shifted away from the true value of the AVO gradient; the
difference between the mean of this histogram (red line) and the
true value is the bias. The solution to a regularized frequentist
AVO inversion will always be biased. The only way to avoid bias
is to use the full unregularized deterministic inverse. Note however
that for a given data set, we do not know the actual noise. The
result of a single inversion will be just a random sample from the
histogram corresponding to the estimator we have chosen. Thus,
it might be safer to select an estimator that is less affected by
random noise. This is a familiar topic in statistical estimation
theory, which is known as the bias-variance tradeoff: The task of
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frequentist inversion is to choose regularization parameters that
minimize the combination of errors due to noise and errors due
to bias. Failure to account for bias can lead to some common pitfalls
in analysis of AVO-inversion products. A good summary of the
frequentist approach to inversion can be found in Hansen (2010).

The Bayesian approach to AVO inversion

'The Bayesian approach to AVO inversion has steadily gained
favor in recent years. Unfortunately, it is somewhat harder for
nonspecialists to understand. We have already emphasized that
the frequentist assumes a single fixed truth about the subsurface
and deals with the issue of ill-posedness by directly altering the
forward model, a technique called regularization. By contrast,
the Bayesian approach views the subsurface — or the understand-
ing of the subsurface — as a probability distribution. Furthermore,
the Bayesian approach leaves the forward model unchanged and
instead uses the prior information as a way to estimate the solution
near the null space. A good reference for Bayesian inference is
Carlin and Louis (2008).

In the section on frequentist inversion, we outlined a simulation
analog that helps understand the statistical model that underlies
the frequentist framework. The statistical model is sometimes
referred to as the sampling model. The Bayesian inversion approach
also has a sampling model. The differences in the sampling models
can be understood by simulation analogs. In the frequentist-
sampling model, the properties are held constant for each realiza-
tion, and only the noise is changed. By contrast, in Bayesian
simulation, both the noise and model parameters change with
each realization. Values for the rock properties in each realization
are drawn randomly from the prior distribution, passed through
the forward model, and added to a realization of noise. Note that
the simulation analogs discussed here are not actually used in
inversion. We mention the analogs only as an aid in understanding
the respective sampling models.

We can divide the Bayesian inversion framework into four
components. We have introduced two already. The first is the
forward model that describes the physics of the forward problem.
The second is the probability distribution that characterizes the
prior knowledge of the subsurface. This is called the prior probability
distribution, or simply the priors. The third component is the noise
model, and the fourth is the posterior probability distribution. This
fourth component represents another important difference between
the frequentist and Bayesian frameworks: frequentist inversion
gives a “best” estimate of subsurface properties, along with error
bars, while Bayesian inversion strives to describe our understanding
of subsurface rock properties using a probability distribution.
Note again that this does not imply that the rock properties are
actually random, but rather it is a description of our understanding
of the rock properties. In practice, Bayesian AVO inversion often
delivers a single estimate of subsurface properties. Bayesian AVO
inversion also provides a sound approach to sampling from the
posterior to generate multiple realizations of subsurface properties,
as in geostatistical inversion. We now consider the four components
of Bayesian AVO inversion one by one.

The forward model. In AVO inversion, there are actually zwo
forward models. The seismic forward model is usually based on the
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Figure 2. Three-term and two-term simulations of noisy estimation of
gradient at a single interface. The two-term gradient estimate has
much less noise, but the mean of all simulations is biased. The three-
term estimate has almost no bias but carries more noise.

Zoeppritz P-P equation or one of its many linearized forms. The
seismic forward model estimates seismic data given elastic rock
properties. The rock-physics forward model estimates elastic properties
given reservoir properties, such as porosity and mineralogy. In the
context of AVO inversion, this raises an important question: is it
best to invert directly to the reservoir properties, or is it best to
first invert to the elastic properties and then follow this with a
second inversion to the reservoir properties?

Two of our contributed papers follow a two-step approach.
This approach has the distinct merit that it allows verification of
the elastic results before going on to the rock-physics inversion.
To be sure, the two-step approach will be most familiar to the
quantitative interpretation community. For example, methods such
as AVO crossplots, rock-physics templates, and seismic cokriging
can be considered as a kind of interpretive rock-physics inversion
step. More recently, this kind of interpretive approach to rock-
physics inversion is being replaced by an actual inversion construct,
such as the approach discussed in Nasser et al. in this issue.

By contrast, the contribution by Kolbjernsen et al. advocates a
one-step Bayesian approach. It can be readily shown in a Bayesian
inversion context that the two-step approach will not give the same
estimate of the posterior distribution as a one-step approach. In
particular, the width of the posterior distribution associated with
the two-step approach will be too narrow because it fails to account
for the uncertainty in the estimates obtained in the first step. On
the other hand, a good one-step workflow should include a verifica-
tion component to ensure that the underlying elastic inference is
reasonable. If the intent is to get a “best” estimate of rock properties
with secondary emphasis on the distribution, then the two-step
approach is a practical workflow that also facilitates verification.

The prior probability distribution (priors). Before an inversion
is performed, we are not completely ignorant about rock properties.
One of the more important types of prior information is the
background elastic model that many AVO inversions use. In the
case of P- and S-impedance inversion, these are the low-frequency
models that are constructed from a combination of well control
and seismic velocity data. Another type of prior information is
shown in Figure 3. This is a crossplot of P- and S-impedance
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Figure 3. A crossplot of P- and S-reflectivity showing the expected
positive correlation. Covariance of elastic properties and their reflec-
tivities are examples of prior information, which can be incorporated
in a Bayesian inversion.

reflectivities taken from a well log. It contains important prior
information that could be included in an AVO inversion. It says
that an increase in P-impedance wsually will be accompanied by
an increase in S-impedance. But what if the seismic is telling us
that, at a particular interface, the S-impedance is increasing, while
the P-impedance is decreasing? While there could be physical
reasons for this — such as at the top of a gas sand — it could also
be a mistake caused by noise in the seismic data. Bayesian AVO
inversion is a formalism that merges the prior information and
the seismic data to describe the posterior distribution. Thus, an
essential part of the Bayesian analysis is to estimate the prior
distribution by integrating additional information, creating an
informative prior. Informative (or strong) priors are good if they
are right but are a pitfall when they are wrong. Avseth et al., in
this issue, give a good example of this. When we impose a prior
distribution that is too strong, we claim to know more than we
actually do. Note that the frequentist approach does not avoid
the pitfalls associated with priors that are too strong. For example,
a frequentist AVO inversion also employs a background model.
If too much character is put into the background model, then this
character will pass through to the inverted solution.

Other types of prior information can be considered. For ex-
ample, we usually know something about the spatial juxtaposition
of earth materials and that there are patterns about how facies
are associated with each other in the subsurface. New approaches
to using facies priors are actively being developed. One of the
computational challenges with priors that describe spatial relation-
ships is that the entire prior model becomes a single interconnected
entity. Therefore, assumptions at one lattice point can influence
the inference at other lattice points throughout the volume.

The noise model. From an inversion perspective, noise is a
random quantity that is added to the seismic data. This is impor-
tant; noise is something added to the data, not the elastic proper-
ties. It is not uncommon for analysts to note the scatter in the
crossplot shown in Figure 3 and refer to this as noise. But this is
not correct. Such scatter is the uncertainty inherent in elastic-
property relationships. Even if we knew P-impedance exactly, we
would still not know S-impedance. This uncertain relationship
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of rock properties is captured in the prior information as described
above. By contrast, noise is something random and unpredictable
that appears on the recorded seismic data. When an AVO inversion
is performed, this noise is mapped back to the rock-property
estimates. So, while we do not talk about noise of the true rock
properties, we do talk about noise on the data and on estimates
of the inverted rock properties. Confusion between noise and the
variability implied by the prior distribution can lead to such incor-
rect heuristic statements as, “The density is noisier in AVO inver-
sion because the density log data has more scatter.” In fact, scatter
in the density has nothing to do with why inverted density is often
noisier than the other two properties. Instead, it is related to the
forward model and the stability of the inverse.

Inboth the frequentist and Bayesian frameworks, the combina-
tion of the forward model and the noise model taken together
represent the physics of the forward problem. Thus, both ap-
proaches require an estimate of the noise structure. (By noise
structure, we mean the noise levels on the angle stacks and noise
correlation between angle stacks.)

The posterior probability distribution. In Bayesian inversion,
the entire posterior probability distribution is the “answer.” To
the extent the prior and the noise structure are correctly estimated,
the Bayesian posterior distribution is an optimal trade-off between
information from the seismic data and information from the
priors. In some cases, we don’t care about the whole distribution,
and instead just want to know what the zesz single answer is. The
mean is often chosen for this purpose because it minimizes a
quantity called the Bayes risk, which can be thought of as the
Bayesian equivalent of the frequentist concept of the mean-square
error. The mean may often be difficult to compute, in which case
the maximum of the posterior distribution can be a more accessible
point estimator. This is called the maximum a posteriori solution,
or MAP. When the priors and noise model are assumed to be
Gaussian, the posterior is also Gaussian, and its mean and variance
can be given in closed form. Furthermore, the mean corresponds
to the MIAP estimator. In practice, an assumption of a Gaussian
prior may be unsatisfactory because the presence of different facies
can imply a multimodal prior.

When priors associated with each facies can be adequately
represented as Gaussian, then the composite prior is a Gaussian
mixture model. In this case, and assuming a Gaussian noise model,
the posterior will also be a Gaussian mixture model where each
component of the mixture is associated with a particular facies.
These sorts of considerations lie at the core of recent efforts to
more reliably identify different facies using AVO inversion.

'This contrasts with the approach of Bayesian classification of facies
based on elastic-inversion results. Using Bayesian classification, the
prior probabilities of the rock properties for each facies are used to
identify facies based on elastic inversion. From a Bayesian perspective,
this is not quite right, and developing a full facies-dependent posterior
distribution would be considered more sound. As noted previously,
sampling from the posterior distribution is one way to characterize
the entire distribution. Such realizations represent possible subsurface
models that are consistent with both the seismic and the prior rock-
physics understanding, and are a good way to generate ranges in
geostatic reservoir models. Note that these realizations are consistent

May 2016 ~ THE LEADING EDGE 403



Downloaded 05/04/16 to 162.246.32.8. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

with the seismic in a statistical sense. Moreover, the forward model
of each realization is not required to exactly match the seismic, but
will be consistent within the range allowed by estimates of noise and
the prior distribution.

Finally, we return again to the topic of bias. As noted previously,
bias is a frequentist concept and refers to the difference between
the true value and the expected value of the inversion solution. The
fact that the Bayesian approach does not include the notion of a
true value means that the formal concept of bias isn’t defined. But
this should not be taken to imply that the Bayesian approach
somehow avoids the underlying issue. The Bayesian inversion is
always influenced by the prior distribution, in the same way the
augmented forward model creates a bias in the frequentist approach.
Indeed, the MAP obtained from a Gaussian prior is nothing but
the frequentist damped least-squares estimate. Thus, if the Bayesian
posterior mean is not interpreted in light of the prior, then this
implies the same need for caution as in the frequentist approach.

Summary

AVO inversion is a core component of seismic rock physics
and quantitative analysis. There are two major statistical frame-
works for AVO inversion. The frequentist framework assumes
that there is a fixed but unknown truth about the subsurface and
seeks to estimate that truth as closely as possible. To achieve this,
the frequentist approach modifies the original forward model
such that its inverse is more stable. The goal of such regularization
is to minimize the combination of bias in the inverted property
and noise. A classic example of this is two-term AVO inversion,
which is one type of truncation.

By contrast, the Bayesian framework describes understanding
of the subsurface as a prior probability distribution. The inversion
approach does not involve modification of the forward model to
make it more stable. Instead, those data are used in combination
with the forward model to produce a posterior probability distribu-
tion that characterizes understanding of the subsurface given the
seismic data. Careful implementation in either framework will
yield good results. The Bayesian framework is steadily gaining
adherents because of the ease with which prior information can
be included in the inversion and because of its ability to facilitate
the idea of multiple solutions that are consistent with both the
seismic data and the prior probability distribution.

'This month’s special section on AVO inversion includes papers
that address a variety of issues encountered in the AVO-inversion
framework discussed above. Here we give a brief summary of each.
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Avseth et al. focus on the use of AVO methodology in the
exploration setting and show key learnings from evaluating mul-
tiple prospects in the Norwegian Sea. The main message is that
one should always have a critical view of the assumptions imposed
by the methodology. On the data side, the authors show that the
cutoff angle for when refraction energy dominates the reflection
energy becomes essential. On the modeling side, the authors show
the pitfalls of excessive confidence in the background model in
regions far from well control.

Nasser et al. show a full-scale 4D case study where different
types of data from geology, geophysics, and rock physics are in-
tegrated to provide a unified interpretation of production effects.
In particular, the authors have used facies-specific low-frequency
models as priors for the 3D inversion and velocity changes from
time-lapse time shifts as priors for the 4D inversion.

Humberto and Dvorkin interpret inverted P- and S-imped-
ances in terms of parameters of a quartz-clay system. Initially,
they classify the fluid content based on the ratio of P- and S-
impedance, then they interpret the total porosity and clay content
assuming the fluid content is as classified. They emphasize the
importance of the rock-physics model and the need for high-
quality well data and inversion results.

Kolbjernsen et al. emphasize that the spatial structure related
to rock properties can improve the inversion results. Integration
of spatial structure is shown to improve prediction capabilities
and increase resolution compared to a standard inversion approach.
'The integration is done in a Bayesian framework, and results are
obtained by a fast parallelizable algorithm.

Thomas et al. highlight the fundamental difference between
the forward problem and the inverse problem in AVO inversion.
'They analyze the situation of a two-term AVO reflectivity inversion
in detail and show that an approach based on forward-model
reasoning introduces inversion bias. They further show how this
error can be corrected using a debiased mapping from intercept
and gradient into elastic properties. H:
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