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Introduction to this special section: AVO inversion

The goal of AVO inversion is to estimate subsurface rock 
properties using seismic P-P reflection data as input. This 

article serves as a nonmathematical introduction to the topic. The 
reader will not find any equations here. Instead, we will use words 
and diagrams to introduce AVO inversion at a conceptual level 
and then set the context for the articles that have been contributed 
to this special section on AVO inversion. 

The deterministic backstor y to AVO inversion
The forward seismic problem can be represented in symbols 

as seismic.model = function(rock.properties). As geophysicists, we are 
inclined to represent the inverse problem as the mathematical 
inverse of this: rock.property_estimate = function-1(seismic.model). In 
other words, our focus is on function and its mathematical inverse, 
function-1. This is a deterministic inversion framework because it 
assumes that the inputs are known precisely and are not subject 
to errors, nor does it take into account the uncertainty in the 
match between the observed seismic data and the forward model. 
Unfortunately, the deterministic approach is not suitable for AVO 
inversion, and an underlying statistical model is required. We 
first explain why this is true before moving on to discuss the two 
major statistical frameworks used in AVO inversion. 

Some input parameters to the AVO forward model have zero 
for an output response. Collectively, these parameters are called 
the null space of the forward model. This is illustrated in Figure 1. 
Most of the parameters input into the forward model will have 
some effect on the seismic response. However, this is not always 
the case. When an input parameter gives the output response of 
zero, we say this parameter is in the null space of the function. 
This situation arises in a variety of circumstances in AVO inversion. 
One example is an impedance profile that is constant with depth. 
There is no output response to a constant profile because the AVO 
forward model includes a derivative-like operator to compute the 
reflectivity. Even when an impedance profile changes with depth, 
the zero Hz component of the profile is in the null space of the 
derivative operator. 

When a forward AVO model involves wavelets that are 
nonzero only within a certain frequency passband, then any 
elastic parameter component outside this passband is in the null 
space of the forward model. For example, if a thin bed is so thin 
that it is outside the passband of the wavelet, then the AVO 
response to the thin bed will be zero and the thin bed response 
is in the null space. Oftentimes, parameters are not in the null 
space but are near it. One example of this is the 5 Hz component 
of the elastic profile. Although the response to the 5 Hz com-
ponent is not zero, it is nearly zero, so we can say that the 5 Hz 
component is near the null space. Similarly, if the seismic wavelet 
is nearly zero at some frequency, then the elastic profile at that 
frequency is near the null space of the forward model.

A related issue involves insensitivity to combinations of input 
parameters. Insensitivity implies that changing a parameter or 
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combination of parameters has no effect on the AVO response. 
Take for example a binary sand/shale system. Changing the poros-
ity of the sand component may not have an effect on the output 
so long as it is matched by just the right change in shale properties 
or the net-to-gross.

When a parameter is near the null space, or when the forward 
model is insensitive to a parameter or combination of parameters, 
then deterministic inversion fails. If a parameter is near the null 
space, then a large change in the parameter causes a small change 
in the modeled seismic data. When the inverse of the function is 
used to estimate parameters from seismic data, then the converse 
is true. That is, a small change in the measured seismic data results 
in a large change in the estimated parameter. This is a classic 
example of instability. Seismic noise can be thought of as random 
perturbations to the seismic data, and it results in large random 
perturbations to estimated properties when they are near the null 
space. A good example of this is that for fixed impedances, a large 
perturbation in density is required to make a visible difference on 
the seismic. Therefore, if a deterministic inverse is used, small 
amounts of noise on the seismic will result in large noise levels 
on the density estimate, even in the case when impedances are 
perfectly reconstructed.

The above paragraphs introduce some of the problematic issues 
associated with AVO inversion and explain why a deterministic 
inverse is not a suitable approach. The various real-world ap-
proaches to solving this kind of ill-posed inverse problem can be 
broadly divided into two categories based on their underlying 
statistical model. To many readers, it might come as a surprise 
that we need to discuss a statistical model in the inversion context, 
but the fact is that the statistical model plays an important role 
in AVO inversion, even in cases where it is not explicitly stated.

The statistical backstor y to AVO inversion
To set the background for understanding the two statistical 

frameworks for inversion, we pose this question: are earth proper-
ties random? The frequentist inversion framework answers no; 
there is a fixed but unknown set of rock properties at any given 

1Hess Corporation.
2Lundin Norway.
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Figure 1. Under normal circumstances, an input parameter will have 
some effect on the output. When an input parameter is in the null 
space it will have no effect. 
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location in the subsurface. The task of inversion is to make an 
estimate of subsurface properties that is as close to this fixed truth 
as possible. By contrast, the Bayesian inversion framework rep-
resents the predrill subsurface properties using a probability 
distribution. This might sound unreasonable at first. After all, 
there is a truth about the subsurface; we just don’t know what that 
truth is until a well is drilled. However, a simple analogy might 
help the reader understand why the Bayesian statistical framework 
has considerable merit. 

Consider a flipped coin while it is still in the air. This is a classic 
example of a random variable where the probability of heads is 
50/50. But what if the coin is caught and hidden until someone 
makes the call heads or tails? Is it still random? The answer is no; 
however, the state of knowledge is still 50/50, and so we would still 
say that the outcome is 50/50. Therefore, the Bayesian inversion 
framework recognizes that this is actually a statement about our 
state of knowledge, and not about the hidden coin itself. Analo-
gously, the subsurface is already a flipped coin, and when we talk 
about probability distributions, it is actually a statement about our 
state of knowledge, not a statement about the subsurface. 

To emphasize: the two broad approaches for dealing with the 
ill-posedness of the seismic forward problem are the frequentist 
and Bayesian approaches. Our starting point for discussing the 
differences between these two approaches is that the frequentist 
views the subsurface properties as fixed but unknown, while the 
Bayesian characterizes the prior understanding of the subsurface 
using a set of probability distributions. Deterministic inversion 
has no statistical model, and this is what differentiates it from 
both the frequentist and Bayesian approaches.

Most geophysicists feel more comfortable with the frequentist 
framework because it conforms to instincts about the subsurface 
and a dominant familiarity with the forward models. But there 
is significant value in the Bayesian approach, and it continues to 
gain popularity within the AVO-inversion community. We’ll 
come to the Bayesian approach shortly, but first we will discuss 
the key elements of frequentist inversion. 

The frequentist approach to AVO inversion
The frequentist approach to dealing with the issue of ill-

posedness is to replace the original forward model with a new one, 
the inverse of which is well-posed. This process is called regulariza-
tion, and it can appear in several forms. Take for example a three-
term linear AVO equation that is parameterized in terms of in-
tercept, slope, and curvature. One approach to regularizing the 
forward model is simply to drop the third term associated with 
curvature and perform a two-term inversion. By far, this is still 
the industry’s most common approach to AVO regularization. It 
falls into a class of regularization approaches called truncation. 

How does truncation work? If the original three-term model 
is more accurate, then why would we intentionally blunt that 
accuracy by throwing away one of the terms? We’ve actually already 
given the answer to this question above: when an input parameter 
or combination of input parameters imparts only a small change 
to the modeled seismic response, then small amounts of noise on 
the recorded data will result in very large changes to the low-order 
parameter estimate. This is truly a paradox! On the one hand, it 
seems desirable to have a forward model with higher precision, 

but, on the other hand, that extra precision causes the inverse 
problem to be more ill-posed. Take for example the Zoeppritz 
equation for P-P reflectivity. From a forward modeling perspective, 
Zoeppritz is presumably more accurate than one of the common 
three-term small-contrast approximations. And yet this precision 
is almost certainly blunted by some form of regularization when 
used in inversion. So, truncation works by eliminating those 
components of the forward model that are close to the null space. 

Another important frequentist approach to regularization is 
to augment (or complement) the original forward model with other 
physical information. Instead of throwing out an unruly parameter 
from the forward model, we augment the forward model with 
constraint equations. For example, it is possible to augment the 
original AVO equations with additional equations that penalize 
the magnitude of the inverted parameters. This augmented structure 
translates directly into the familiar damped least-squares formula-
tion. Sometimes, additional rock-physics information can be in-
corporated directly into the forward model. For example, if there 
is a known relationship between velocity and density, then this 
can be explicitly included in the forward model. Note the difference 
between this and the Bayesian approach: whereas the Bayesian 
approach employs a probability distribution to represent prior 
rock-physics information, the frequentist approach alters the 
forward model itself to incorporate rock-physics relationships.

Unfortunately, changing the original forward model in the 
frequentist approach introduces a new problem called bias. The 
informal meaning of bias is that although the answer is less noisy, 
it suffers a shift away from the true answer. A simulation experi-
ment can be performed to illustrate this effect. Remember that 
the frequentist assumption is that there is a single true answer; 
this gives the following setup for the experiment:

1) Assume some fixed value for rock properties. 
2) Forward model the data using the full-forward model. 
3) Add random noise to the simulated data. 
4) Invert using the inverse of the regularized forward model and 

store the result. 
5) Repeat from 3 for each realization of noise.

 
Figure 2 shows a comparison of the result where the three-term 

AVO equation is used as a forward model. The histogram obtained 
for the estimate of AVO gradient is displayed for a full three-term 
inversion and a two-term truncated model. The histogram obtained 
with the three-term expression is centered directly on the true 
value (green line) but has a considerably wider spread than the 
estimate based on two terms. The two-term histogram, however, 
is shifted away from the true value of the AVO gradient; the 
difference between the mean of this histogram (red line) and the 
true value is the bias. The solution to a regularized frequentist 
AVO inversion will always be biased. The only way to avoid bias 
is to use the full unregularized deterministic inverse. Note however 
that for a given data set, we do not know the actual noise. The 
result of a single inversion will be just a random sample from the 
histogram corresponding to the estimator we have chosen. Thus, 
it might be safer to select an estimator that is less affected by 
random noise. This is a familiar topic in statistical estimation 
theory, which is known as the bias-variance tradeoff. The task of 
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frequentist inversion is to choose regularization parameters that 
minimize the combination of errors due to noise and errors due 
to bias. Failure to account for bias can lead to some common pitfalls 
in analysis of AVO-inversion products. A good summary of the 
frequentist approach to inversion can be found in Hansen (2010). 

The Bayesian approach to AVO inversion
The Bayesian approach to AVO inversion has steadily gained 

favor in recent years. Unfortunately, it is somewhat harder for 
nonspecialists to understand. We have already emphasized that 
the frequentist assumes a single fixed truth about the subsurface 
and deals with the issue of ill-posedness by directly altering the 
forward model, a technique called regularization. By contrast, 
the Bayesian approach views the subsurface — or the understand-
ing of the subsurface — as a probability distribution. Furthermore, 
the Bayesian approach leaves the forward model unchanged and 
instead uses the prior information as a way to estimate the solution 
near the null space. A good reference for Bayesian inference is 
Carlin and Louis (2008).

In the section on frequentist inversion, we outlined a simulation 
analog that helps understand the statistical model that underlies 
the frequentist framework. The statistical model is sometimes 
referred to as the sampling model. The Bayesian inversion approach 
also has a sampling model. The differences in the sampling models 
can be understood by simulation analogs. In the frequentist-
sampling model, the properties are held constant for each realiza-
tion, and only the noise is changed. By contrast, in Bayesian 
simulation, both the noise and model parameters change with 
each realization. Values for the rock properties in each realization 
are drawn randomly from the prior distribution, passed through 
the forward model, and added to a realization of noise. Note that 
the simulation analogs discussed here are not actually used in 
inversion. We mention the analogs only as an aid in understanding 
the respective sampling models. 

We can divide the Bayesian inversion framework into four 
components. We have introduced two already. The first is the 
forward model that describes the physics of the forward problem. 
The second is the probability distribution that characterizes the 
prior knowledge of the subsurface. This is called the prior probability 
distribution, or simply the priors. The third component is the noise 
model, and the fourth is the posterior probability distribution. This 
fourth component represents another important difference between 
the frequentist and Bayesian frameworks: frequentist inversion 
gives a “best” estimate of subsurface properties, along with error 
bars, while Bayesian inversion strives to describe our understanding 
of subsurface rock properties using a probability distribution. 
Note again that this does not imply that the rock properties are 
actually random, but rather it is a description of our understanding 
of the rock properties. In practice, Bayesian AVO inversion often 
delivers a single estimate of subsurface properties. Bayesian AVO 
inversion also provides a sound approach to sampling from the 
posterior to generate multiple realizations of subsurface properties, 
as in geostatistical inversion. We now consider the four components 
of Bayesian AVO inversion one by one.

The forward model. In AVO inversion, there are actually two 
forward models. The seismic forward model is usually based on the 

Zoeppritz P-P equation or one of its many linearized forms. The 
seismic forward model estimates seismic data given elastic rock 
properties. The rock-physics forward model estimates elastic properties 
given reservoir properties, such as porosity and mineralogy. In the 
context of AVO inversion, this raises an important question: is it 
best to invert directly to the reservoir properties, or is it best to 
first invert to the elastic properties and then follow this with a 
second inversion to the reservoir properties? 

Two of our contributed papers follow a two-step approach. 
This approach has the distinct merit that it allows verification of 
the elastic results before going on to the rock-physics inversion. 
To be sure, the two-step approach will be most familiar to the 
quantitative interpretation community. For example, methods such 
as AVO crossplots, rock-physics templates, and seismic cokriging 
can be considered as a kind of interpretive rock-physics inversion 
step. More recently, this kind of interpretive approach to rock-
physics inversion is being replaced by an actual inversion construct, 
such as the approach discussed in Nasser et al. in this issue. 

By contrast, the contribution by Kolbjørnsen et al. advocates a 
one-step Bayesian approach. It can be readily shown in a Bayesian 
inversion context that the two-step approach will not give the same 
estimate of the posterior distribution as a one-step approach. In 
particular, the width of the posterior distribution associated with 
the two-step approach will be too narrow because it fails to account 
for the uncertainty in the estimates obtained in the first step. On 
the other hand, a good one-step workflow should include a verifica-
tion component to ensure that the underlying elastic inference is 
reasonable. If the intent is to get a “best” estimate of rock properties 
with secondary emphasis on the distribution, then the two-step 
approach is a practical workflow that also facilitates verification. 

The prior probability distribution (priors). Before an inversion 
is performed, we are not completely ignorant about rock properties. 
One of the more important types of prior information is the 
background elastic model that many AVO inversions use. In the 
case of P- and S-impedance inversion, these are the low-frequency 
models that are constructed from a combination of well control 
and seismic velocity data. Another type of prior information is 
shown in Figure 3. This is a crossplot of P- and S-impedance 

Figure 2. Three-term and two-term simulations of noisy estimation of 
gradient at a single interface. The two-term gradient estimate has 
much less noise, but the mean of all simulations is biased. The three-
term estimate has almost no bias but carries more noise.
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reflectivities taken from a well log. It contains important prior 
information that could be included in an AVO inversion. It says 
that an increase in P-impedance usually will be accompanied by 
an increase in S-impedance. But what if the seismic is telling us 
that, at a particular interface, the S-impedance is increasing, while 
the P-impedance is decreasing? While there could be physical 
reasons for this — such as at the top of a gas sand — it could also 
be a mistake caused by noise in the seismic data. Bayesian AVO 
inversion is a formalism that merges the prior information and 
the seismic data to describe the posterior distribution. Thus, an 
essential part of the Bayesian analysis is to estimate the prior 
distribution by integrating additional information, creating an 
informative prior. Informative (or strong) priors are good if they 
are right but are a pitfall when they are wrong. Avseth et al., in 
this issue, give a good example of this. When we impose a prior 
distribution that is too strong, we claim to know more than we 
actually do. Note that the frequentist approach does not avoid 
the pitfalls associated with priors that are too strong. For example, 
a frequentist AVO inversion also employs a background model. 
If too much character is put into the background model, then this 
character will pass through to the inverted solution.

Other types of prior information can be considered. For ex-
ample, we usually know something about the spatial juxtaposition 
of earth materials and that there are patterns about how facies 
are associated with each other in the subsurface. New approaches 
to using facies priors are actively being developed. One of the 
computational challenges with priors that describe spatial relation-
ships is that the entire prior model becomes a single interconnected 
entity. Therefore, assumptions at one lattice point can influence 
the inference at other lattice points throughout the volume.

The noise model. From an inversion perspective, noise is a 
random quantity that is added to the seismic data. This is impor-
tant; noise is something added to the data, not the elastic proper-
ties. It is not uncommon for analysts to note the scatter in the 
crossplot shown in Figure 3 and refer to this as noise. But this is 
not correct. Such scatter is the uncertainty inherent in elastic-
property relationships. Even if we knew P-impedance exactly, we 
would still not know S-impedance. This uncertain relationship 

of rock properties is captured in the prior information as described 
above. By contrast, noise is something random and unpredictable 
that appears on the recorded seismic data. When an AVO inversion 
is performed, this noise is mapped back to the rock-property 
estimates. So, while we do not talk about noise of the true rock 
properties, we do talk about noise on the data and on estimates 
of the inverted rock properties. Confusion between noise and the 
variability implied by the prior distribution can lead to such incor-
rect heuristic statements as, “The density is noisier in AVO inver-
sion because the density log data has more scatter.” In fact, scatter 
in the density has nothing to do with why inverted density is often 
noisier than the other two properties. Instead, it is related to the 
forward model and the stability of the inverse.

In both the frequentist and Bayesian frameworks, the combina-
tion of the forward model and the noise model taken together 
represent the physics of the forward problem. Thus, both ap-
proaches require an estimate of the noise structure. (By noise 
structure, we mean the noise levels on the angle stacks and noise 
correlation between angle stacks.) 

The posterior probability distribution. In Bayesian inversion, 
the entire posterior probability distribution is the “answer.” To 
the extent the prior and the noise structure are correctly estimated, 
the Bayesian posterior distribution is an optimal trade-off between 
information from the seismic data and information from the 
priors. In some cases, we don’t care about the whole distribution, 
and instead just want to know what the best single answer is. The 
mean is often chosen for this purpose because it minimizes a 
quantity called the Bayes risk, which can be thought of as the 
Bayesian equivalent of the frequentist concept of the mean-square 
error. The mean may often be difficult to compute, in which case 
the maximum of the posterior distribution can be a more accessible 
point estimator. This is called the maximum a posteriori solution, 
or MAP. When the priors and noise model are assumed to be 
Gaussian, the posterior is also Gaussian, and its mean and variance 
can be given in closed form. Furthermore, the mean corresponds 
to the MAP estimator. In practice, an assumption of a Gaussian 
prior may be unsatisfactory because the presence of different facies 
can imply a multimodal prior. 

When priors associated with each facies can be adequately 
represented as Gaussian, then the composite prior is a Gaussian 
mixture model. In this case, and assuming a Gaussian noise model, 
the posterior will also be a Gaussian mixture model where each 
component of the mixture is associated with a particular facies. 
These sorts of considerations lie at the core of recent efforts to 
more reliably identify different facies using AVO inversion. 

This contrasts with the approach of Bayesian classification of facies 
based on elastic-inversion results. Using Bayesian classification, the 
prior probabilities of the rock properties for each facies are used to 
identify facies based on elastic inversion. From a Bayesian perspective, 
this is not quite right, and developing a full facies-dependent posterior 
distribution would be considered more sound. As noted previously, 
sampling from the posterior distribution is one way to characterize 
the entire distribution. Such realizations represent possible subsurface 
models that are consistent with both the seismic and the prior rock-
physics understanding, and are a good way to generate ranges in 
geostatic reservoir models. Note that these realizations are consistent 

Figure 3. A crossplot of P- and S-reflectivity showing the expected 
positive correlation. Covariance of elastic properties and their reflec-
tivities are examples of prior information, which can be incorporated 
in a Bayesian inversion.
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with the seismic in a statistical sense. Moreover, the forward model 
of each realization is not required to exactly match the seismic, but 
will be consistent within the range allowed by estimates of noise and 
the prior distribution.

Finally, we return again to the topic of bias. As noted previously, 
bias is a frequentist concept and refers to the difference between 
the true value and the expected value of the inversion solution. The 
fact that the Bayesian approach does not include the notion of a 
true value means that the formal concept of bias isn’t defined. But 
this should not be taken to imply that the Bayesian approach 
somehow avoids the underlying issue. The Bayesian inversion is 
always influenced by the prior distribution, in the same way the 
augmented forward model creates a bias in the frequentist approach. 
Indeed, the MAP obtained from a Gaussian prior is nothing but 
the frequentist damped least-squares estimate. Thus, if the Bayesian 
posterior mean is not interpreted in light of the prior, then this 
implies the same need for caution as in the frequentist approach. 

Summar y 
AVO inversion is a core component of seismic rock physics 

and quantitative analysis. There are two major statistical frame-
works for AVO inversion. The frequentist framework assumes 
that there is a fixed but unknown truth about the subsurface and 
seeks to estimate that truth as closely as possible. To achieve this, 
the frequentist approach modifies the original forward model 
such that its inverse is more stable. The goal of such regularization 
is to minimize the combination of bias in the inverted property 
and noise. A classic example of this is two-term AVO inversion, 
which is one type of truncation. 

By contrast, the Bayesian framework describes understanding 
of the subsurface as a prior probability distribution. The inversion 
approach does not involve modification of the forward model to 
make it more stable. Instead, those data are used in combination 
with the forward model to produce a posterior probability distribu-
tion that characterizes understanding of the subsurface given the 
seismic data. Careful implementation in either framework will 
yield good results. The Bayesian framework is steadily gaining 
adherents because of the ease with which prior information can 
be included in the inversion and because of its ability to facilitate 
the idea of multiple solutions that are consistent with both the 
seismic data and the prior probability distribution. 

This month’s special section on AVO inversion includes papers 
that address a variety of issues encountered in the AVO-inversion 
framework discussed above. Here we give a brief summary of each.

Avseth et al. focus on the use of AVO methodology in the 
exploration setting and show key learnings from evaluating mul-
tiple prospects in the Norwegian Sea. The main message is that 
one should always have a critical view of the assumptions imposed 
by the methodology. On the data side, the authors show that the 
cutoff angle for when refraction energy dominates the reflection 
energy becomes essential. On the modeling side, the authors show 
the pitfalls of excessive confidence in the background model in 
regions far from well control. 

Nasser et al. show a full-scale 4D case study where different 
types of data from geology, geophysics, and rock physics are in-
tegrated to provide a unified interpretation of production effects. 
In particular, the authors have used facies-specific low-frequency 
models as priors for the 3D inversion and velocity changes from 
time-lapse time shifts as priors for the 4D inversion.

Humberto and Dvorkin interpret inverted P- and S-imped-
ances in terms of parameters of a quartz-clay system. Initially, 
they classify the fluid content based on the ratio of P- and S-
impedance, then they interpret the total porosity and clay content 
assuming the fluid content is as classified. They emphasize the 
importance of the rock-physics model and the need for high-
quality well data and inversion results. 

Kolbjørnsen et al. emphasize that the spatial structure related 
to rock properties can improve the inversion results. Integration 
of spatial structure is shown to improve prediction capabilities 
and increase resolution compared to a standard inversion approach. 
The integration is done in a Bayesian framework, and results are 
obtained by a fast parallelizable algorithm. 

Thomas et al. highlight the fundamental difference between 
the forward problem and the inverse problem in AVO inversion. 
They analyze the situation of a two-term AVO reflectivity inversion 
in detail and show that an approach based on forward-model 
reasoning introduces inversion bias. They further show how this 
error can be corrected using a debiased mapping from intercept 
and gradient into elastic properties. 

Corresponding author: mnasser@hess.com 
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